



Aerospace Mobility Studies

October 2, 2001

Bob McKinley r.e.mckinley@larc.nasa.gov

Why an Aerospace Mobility Group?

- The underlying purpose for most aerospace vehicles is to move something from an origin to a destination.
 - Other purposes may be surveillance, tourism, recreation
- The RASC approach to mobility will include a fundamental view of each system used to accomplish a transportation mission.
 - Infrastructure
 - Vehicles
 - Operations
- The objective will be to identify capabilities that enable a superior vision of the future, requirements pursuant to reaching the capabilities, and key technologies that fulfill those requirements.

Aerospace Mobility Studies

- Mission Group Overview
- Advanced Airspace System Concepts
- Quiet Green Transport
- Personal Air Vehicle
- Global-Orbital Transport

Mission Group Overview

- Baseline: Today's Capabilities
 - Most of the trips are taken in commercial air
 - "Hub and spoke" is the dominant operational concept
 - Short trips are by ground
 - Long trips take a day by air
 - Not particularly "user friendly" or "neighborly"
- Vision: Air is the primary solution for high value transportation (and it's not a burden to individuals).
- Where is the revolution?
 - Exploring the limits of speed, convenience, safety and cost.
 - Air transport system is a "good neighbor"
 - Look at vehicles and infrastructure as an integrated system,
 with associated impacts upon the users and neighbors

Advanced Airspace Concepts

- Address the far-term, post-OEP issues related to the National Air Space Architecture
 - Non-linear, discontinuous effects of widely distributed problems whose summation can lock down the system
- Approach via contracted study to MIT
 - John Hansman and associates
 - Work non-linearities and ops/procedures
 - Model new comm/nav/surv approaches to address effects
- Study team
 - MIT, Draper Labs, Aero Engineering, LMI, Team Vision, LaRC
 - AvSTAR/VAM, ISAT, AvSP, & Blueprint will leverage activity
- Groundrules & Assumptions
 - There's nothing new under the sun (many ideas, no content)
 - Move towards next level of detail to substantiate ideas
 - Eventually, synthesize into viable post-OEP architecture

Quiet-Green Transport

- For FY02, continue FY01 QGT track
 - Aircraft noise inside airport fence, no bad emissions
 - Complete Concepts B & C
- Identify capabilities and requirements for viable zeroemission transports
 - Propulsion & airframe
- Study Team
 - GRC, LaRC
 - TCAT, RAC, UEET, and QAT will leverage activities
- Groundrules & Assumptions
 - Same as FY01 work

Personal Air Vehicle Exploration

For FY02, continue FY01 PAV track

- Address capabilities and requirements ID'd in FY01 work
- Define integrated vehicles, technologies, and systems that can fulfill mission

Study Approach

- Delve into detailed concept and technology analysis and evaluations of new mobility concepts
- In-depth concept creation & system analyses, numerical simulations, small wind-tunnel tests, & powered models

Study Team

- GRC, GM, Ford, Boeing, Mdot Aerospace, Cal Poly, Georgia Tech, LaRC
- SATS/uSATS, AvSTAR/VAM, & ISAT will leverage activities

Groundrules & Assumptions

Same as FY01 work

Global-Orbital Transport

- For FY02, continue FY01 GOT track
 - Address capabilities and requirements ID'd in FY01 work
 - Define integrated vehicles, technologies, and systems that can fulfill mission
- Study Approach
 - Update Global Transport, 2STO, 3STO
 - Define cost advantages of dual-use vehicle
 - Analyze to define environmental impact
 - Develop technology sensitivities
- Study Team
 - Code R, Code M
- Groundrules & Assumptions
 - Same as FY01

Summary

Issues and feedback on direction